Aspects of nuclear electroweak processes in EFTs

Tae-Sun Park

Sungkyunkwan U.

Dense Matter Workshop, December 7~9, 2016, Postech

Contents

- Brief reviews on
 - Aspects on electro-weak currents of HBChPT
 - Challenges we have encountered
- Discussions

Meson-exchange currents :1970's

- $\nabla \cdot \vec{J} = -i [H, \rho(x)],$ *H* contains $V_{\tau} = V \tau_1 \cdot \tau_2, \rho(x)$ contains $\tau_{1z} \& \tau_{2z},$ and $[\tau_1 \cdot \tau_2, \tau_{1z}] \sim \tau_1 \times \tau_2$
- => there should be meson-exchange currents (MEC)

$$\Rightarrow N, \Delta, \pi, \rho, \omega, \sigma, a_1, \ldots$$

- Chemtob & Rho derived MEC using current algebra
- Riska & Brown considered the $\sigma(np \rightarrow d \gamma)$, trying to remove the gap between exp= 330 mb, 1B= 300 mb.

Heavy-Baryon chiral perturbation theory: 1990's

- With only $N \& \pi$
 - Minimal set, respecting the "spontaneously broken chiral symmetry", the most important aspect of low-energy QCD
 - Expansion parameter = Q/Λ_{χ} , Q = typical momentum transfer and /or m_{π} , $\Lambda_{\chi} \sim m_N \sim 4\pi f_{\pi} \sim 1 \text{ GeV}$.
 - Other dofs (ρ , ω , Δ , ...) : integrated out
 - Well-defined power-counting, systematic & consistent expansion => "EFT" became an everyday language

Power counting

•
$$v = 2 - \left(\frac{E_N}{2} + E_{ext}\right) + 2L + \sum_i \overline{v_i}, \ \overline{v_i} = \left(d_i + \frac{n_i}{2} + e_i - 2\right)$$

Contributions to the nuclear current at ${\bf q}={\bf 0}$

Park et. al. PRC 67, 055206 (2003)

J_{μ}	LO	NLO	N ² LO	N ³ LO	N ⁴ LO
Α	1B	-	1B-RC	2B	1B-RC, 2B-1L, and 3B
A_0	-	1B	2B	1B-RC	1B-RC, 2B-1L
V	-	1B	2B	1B-RC	1B-RC, 2B-1L
V_0	1B	-	-	2B	1B-RC, 2B-1L, and 3B

• With heavy mesons

$$\nu = 2 - \left(\frac{E_N}{2} + E_H + E_{ext}\right) + 2L + \sum_i \left(d_i + \frac{n_i}{2} + h_i + e_i - 2\right)$$

$$\mu_{1B}(q) = \sum_{i} \frac{1}{2m_{p}} \left\{ \hat{j}_{0}(qr_{i}) \left[\boldsymbol{\sigma}_{i} \left(\mu_{i} - Q_{i} \frac{\boldsymbol{\bar{p}}_{i}^{2}}{2m^{2}} \right) - \frac{\mu_{i} - Q_{i}}{2m^{2}} \boldsymbol{\bar{p}}_{i} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\bar{p}}_{i} \right] \right. \\ \left. + \hat{j}_{1}(qr_{i}) \left[Q_{i} \boldsymbol{r}_{i} \times \boldsymbol{\bar{p}}_{i} \left(1 - \frac{\boldsymbol{\bar{p}}_{i}^{2}}{2m^{2}} \right) - \frac{w(2\mu_{i} - Q_{i})}{4m} i \boldsymbol{r}_{i} \times (\boldsymbol{\bar{p}}_{i} \times \boldsymbol{\sigma}_{i}) \right] \right. \\ \left. + \frac{(qr_{i})^{2}}{30} \hat{j}_{2}(qr_{i})(3\hat{\boldsymbol{r}}_{i} \, \boldsymbol{\hat{r}}_{i} \cdot \boldsymbol{\sigma}_{i} - \boldsymbol{\sigma}_{i}) + \cdots \right\}$$
(2)

.

$$\boldsymbol{\mu}_{2\mathrm{B}}(q) = \sum_{i < j} \left[\boldsymbol{\mu}_{ij}^{1\pi} + \left(\boldsymbol{\mu}_{ij}^{1\pi C} + \boldsymbol{\mu}_{ij}^{1\pi:fixed} + \boldsymbol{\mu}_{ij}^{2\pi} + \boldsymbol{\mu}_{ij}^{CT} \right) \right] = \mathrm{NLO} + \mathrm{N}^{3}\mathrm{LO}.$$
(3)

The leading MEC due to the *soft*-one-pion-exchange (1π) is NLO and given as

$$\mu_{12}^{1\pi} = \frac{g_A^2}{8f_\pi^2} \left[\hat{T}_S^{(\times)} \left(\frac{2}{3} y_{1\Lambda}^{\pi}(r) - y_{0\Lambda}^{\pi}(r) \right) - \hat{T}_T^{(\times)} y_{1\Lambda}^{\pi}(r) \right] \hat{j}_0(qR) - \frac{g_A^2 m_\pi^2}{24 f_\pi^2} \tau_{\times}^z \mathbf{R} \times \mathbf{r} \left[\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \bar{y}_{0\Lambda}^{\pi}(r) + S_{12} y_{2\Lambda}^{\pi}(r) \right] \hat{j}_1(qR) + \cdots,$$
(4)

$$\begin{split} \mu_{12}^{1\pi C} &= -\frac{g_A^2}{8f_\pi^2} (\bar{c}_\omega + \bar{c}_\Delta) \left[(\hat{T}_S^{(+)} + \hat{T}_S^{(-)}) \frac{\bar{y}_{0\Lambda}^\pi}{3} + (\hat{T}_T^{(+)} + \hat{T}_T^{(-)}) y_{2\Lambda}^\pi \right] \hat{j}_1(qR) \\ &+ \frac{g_A^2}{8f_\pi^2} \bar{c}_\Delta \left[\frac{1}{3} \hat{T}_S^{(\times)} \bar{y}_{0\Lambda}^\pi - \frac{1}{2} \hat{T}_T^{(\times)} y_{2\Lambda}^\pi \right] \hat{j}_1(qR) \\ &- \frac{1}{16f_\pi^2} \bar{N}_{WZ} \tau_1 \cdot \tau_2 \left[\boldsymbol{\sigma}_+ \bar{y}_{0\Lambda}^\pi + (3\hat{r}\hat{r} \cdot \boldsymbol{\sigma}_+ - \boldsymbol{\sigma}_+) y_{2\Lambda}^\pi \right] \hat{j}_1(qR). \end{split}$$
$$\mu_{12}^{2\pi} &= \frac{1}{128\pi^2 f_\pi^4} \left[\left(\hat{T}_S^{(+)} - \hat{T}_S^{(-)} \right) L_S + \left(\hat{T}_T^{(+)} - \hat{T}_T^{(-)} \right) L_T \right] \hat{j}_1(qR) \\ &- \frac{1}{256\pi^2 f_\pi^4} (\tau_1 \times \tau_2)^z R \times \hat{r} \frac{d}{dr} L_0 \hat{j}_0(qR) \end{split}$$

The c_ω, c_Δ, N_{WZ} are LECs for πγNN vertex, where experimental data at low-E are poor.
We used the resonance (ρ, ω, Δ) saturation assumptions to estimate their values

$$\mu_{12}^{CT} = \frac{1}{2m_p} [g_{4S}(\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) + g_{4V}T_S^{(\times)}]\delta_{\Lambda}^{(3)}(\boldsymbol{r})\hat{j}_0(\boldsymbol{q}R).$$

$\sigma(np \rightarrow d \gamma)$

- 1% accuracy !
 - ChPT : 334(3) mb
 - Exp: 332.6(6) mb
- Why r_C –dependent ?
 - LEC (g_{4v}) for CT is set to 0, don't how to fix it.
- Can we do better ?
 - No, unless we can fix the LEC
 - Going higher order does not help
 - Including heavy dofs might be helpful

FIG. 2. Total capture cross section σ (top) and δ 's (bottom) vs the cutoff r_c . The solid line represents the total contributions and the experimental values are given by the shaded band indicating the error bar. The dotted line gives δ_{tree} , the dashed line $\delta_{tree} + \delta_{1\pi}^{\Delta}$, the dot-dashed line $\delta_{tree} + \delta_{1\pi} = \delta_{tree} + \delta_{1\pi}^{\Delta} + \delta_{1\pi}^{\omega}$, and the solid line the total ratio δ_{2B} .

Renormalization & RG invariance

- Contact terms represent the contributions from the integratedout dofs
- Total = (long + short) + CT
- RG invariance : short-ranged contributions are well represented by local operators

(short-range) = $C_0 \delta(r_{ij}) + C_2 \partial^2 \delta(r_{ij}) + \dots$

- Correspondence
 - (short-range) = model-dependent part
 - C_0 , C_2 , ... = LECs
- So, mistakes/mismatches in the short-range region means only different values of C_0 , C_2 , ..., while the net results remain invariant
- Can be numerically checked by looking at Λ -dependence.
- But RG invariance does not help for any long-ranged mismatches

$$\mu_{12}^{CT} = \frac{1}{2m_p} [g_{4S}(\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) + g_{4V}T_S^{(\times)}]\delta_{\Lambda}^{(3)}(\boldsymbol{r})\hat{j}_0(\boldsymbol{q}R)$$

- g_{4S} and g_{4V} appear in
 - $\mu(^{2}H), \mu(^{3}H), \mu(^{3}He), \dots$
 - Cross sections/spin observables of np \rightarrow d γ , nd \rightarrow t γ , ...
- We can fix g_{4S} and g_{4V} by
 - A=2 sector: $\mu(^{2}H)$ and $\sigma(np \rightarrow d\gamma)$
 - A=3 sector: $\mu(^{3}H)$ and $\mu(^{3}He)$

A-depdendence (model: INOY) Fixed $g_{4s} \& g_{4v}$ by using $\mu(^{3}H)$ and $\mu(^{3}He)$

∧ [MeV]	µ(d)	σ(np) [mb]	σ (nd) [mb]
500	0.8584	330.9	0.501
600	0.8584	330.7	0.497
700	0.8585	330.5	0.495
800	0.8583	330.5	0.495
900	0.8583	330.4	0.496
Exp.	0.8574	332.6(6)	0.508(15)

but ...

Model-dependence (naïve version)

Model	µ(d)	σ(np) [mb]	σ (nd) [mb]	BE(H3) [MeV]	BE(He3) [MeV]
Av18	0.858	331.9	0.68	7.623	6.925
Av18+U9	0.860	330.6	0.48	8.483	7.753
INOY	0.859	330.6	0.50	8.483	7.720
I-N3LO	0.857	330.4	0.63	7.852	7.159
E1-N3LO	0.858	328.7	0.69	7.636	6.904
E4-N3LO	0.859	331.0	0.61	7.930	7.210
E5-N3LO	0.855	330.9	0.88	7.079	6.403
Exp.	0.8574	332.6(7)	0.58(1)	8.482	7.718

Issue : What if potential fails to reproduce ERPs accurately

- Mismatches in the long-range region
- RG invariance says nothing here, and we are in trouble !
- Possible solutions :
 - 1. Use only accurate potentials
 - 2. Adjust the potential to reproduce those ERPs correctly
 - 3. Find out the correlation between matrix elements and ERPs

M1(J=1/2) $\approx \phi_2(B_3)$,

 $M1(J=3/2) \approx \phi_4(B_3)$

Model-dependence (improved)

Model	µ_d	σ_np [mb]	σ_nd [mb]	BE(H3) [MeV]	BE(He3) [MeV]
Av18+U9	0.860	330.6	0.478(3)	8.483	7.753
INOY	0.859	330.6	0.498(3)	8.483	7.720
I-N3LO+U9*	0.859(1)	330.2(4)	0.479(4)	8.482	7.737
Exp.	0.8574	332.6(7)	0.508(15)	8.482	7.718

- Model-dependence is tricky
 - Naively large model-dependence
 - But strongly correlated to the triton binding energy
 - Model-independent results could be obtained
 - either by making use of the correlation curve
 - or by adjusting the parameters of 3N potential to have correct ERPs

The *hen* process (${}^{3}\text{He} + n \rightarrow {}^{4}\text{He} + \gamma$)

 $\sigma(\exp) = (55 \pm 3) \ \mu b, (54 \pm 6) \ \mu b$

2-14 μb : (1981) Towner & Kanna 50 μb : (1991) Wervelman (112, 140) μb : (1990) Carlson et al (86, 112) μb : (1992) Schiavilla et al

Our calculation

- Difficulties
 - $< 1B(LO) > \rightarrow N^3 LO$ due to pseudo-orthogonality between wfs
 - Coincidental cancellation between 1B and MEC occurs.
 - 4-body wave functions
- Wave functions: Faddeev-Yakubovski equations
- M1 currents up to N³LO
- g_{4s} and g_{4v} : fixed by (³H) and μ (³He)

• *Cutoff-dependence*: (Re M_{hen}) vs Λ [MeV]

• *hen cross section*: model-dependent (naïve version)

Model	σ _{n3He} [μb]	B (⁴ He) [MeV]	B (³ H) [MeV]	B (³ He) [MeV]	³ a _{n3He} [fm]	r _{He4} [fm]	P _D (⁴ He) [%]
Av18	80(12.2)	24.23	7.623	6.925	3.43-0.0082i	1.516	13.8
I-N3LO	57.3(7.9)	25.36	7.852	7.159	3.56-0.007i	1.520	9.30
I-N3LO+UIX*	44.4(6.7)	28.12	8.482	7.737	3.44-0.0055 i	1.475	10.9
Av18+UIX	49.4(8.5)	28.47	8.483	7.753	3.23-0.0054i	1.431	16.0
INOY	34.4(4.5)	29.08	8.482	7.720	3.26-0.0058i	1.377	5.95
Exp.	55(3); 54(6)	28.3	8.482	7.718	3.28(5)- 0.001(2)i	1.475(6)	

• How hen cross section is correlated to ERPs ? $\sigma_{n3He} \propto \zeta \equiv [q (a_{nHe3}/r_{He4})^2]^{-2.75} \text{ or } \sigma_{n3He} \propto q^{-5} P_D^{2/3}$

Convergence ?

TABLE V: Matrix elements for the Av18+UIX wave function with $\Lambda = 700$ MeV; the LEC values corresponding to this case are: $(g_{4s}, g_{4v}) = (0.581, -0.4615)$ [fm³].

	$\mu(^{3}\mathrm{H})$	$\mu(^{3}\mathrm{He})$	$\Re \mathcal{M}$	$\Im \mathcal{M}$
1B: LO	2.5727	-1.7632	0.0964	-0.0136
1B: RC	-0.0171	0.0037	0.0554	-0.0075
1B-total	2.5556	-1.7595	0.1518	-0.0211
2B: 1π (NLO)	0.2292	-0.2258	-0.1657	0.0195
2B: $1\pi C$ (N ³ LO)	0.1578	-0.1289	-0.1465	0.0172
2B: 2π (N ³ LO)	0.0419	-0.0408	-0.0445	0.0052
finite (total w/o CT)	2.9845	-2.1550	-0.2049	0.0208
	$0.0193 g_{4s}$	$0.0190 g_{4s}$	$0.0205 g_{4s}$	$-0.0014 g_{4s}$
	$+0.0363 g_{4v}$	$-0.0354 g_{4v}$	$-0.0377 g_{4v}$	$+0.0044 g_{4v}$
2B: CT (N ³ LO)	= -0.0055	= 0.0274	= 0.0293	= -0.0029
Total	2.9790	-2.1276	-0.1756	0.0179

"Things Are Not What They Appear", Disney Pocahontas 2

- Observation: If we omit something (say, $\langle J_{2\pi} \rangle$), values of g_{4s} and g_{4v} should also be changed to have the correct $\mu(^{3}H)$ and $\mu(^{3}He)$ without $\langle J_{2\pi} \rangle$.
- "effective $\langle J_{2\pi} \rangle$ " = changes in the net ME if we omit $\langle J_{2\pi} \rangle$

	na ïve <j></j>	effective <j></j>
2B: 1π (NLO)	-0.1657	0.0749
2B: 1πC(N ³ LO)	-0.1465	-0.0093
2B: 2π (N ³ LO)	-0.0445	-0.0010

If we omit 2π (N³LO), our results will change only about 0.6 %, instead of 25% !

Results(M_{2B}/M_{1B}) of M1S ($n+p \rightarrow d+\gamma$) : N³LO N⁴LO

TSP, K. Kubodera, D.-P. Min & M. Rho, _PLB472(' 00)232

Gamow-Teller channel (*pp* and *hep*)

$$\vec{A}_{1B} = g_A \sum_{i} \tau_i \left[\vec{\sigma}_i + \frac{\vec{p}_i \sigma_i \cdot p_i - \vec{\sigma}_i p_i^2}{2m_N^2} \right] = \text{LO} + \text{N}^2 \text{LO}$$
$$\vec{A}_{2B} = \sum_{i < j} \left[\vec{A}_{ij}^{\text{OPE}} + \vec{A}_{ij}^{4F} \right] = \text{N}^3 \text{LO}$$

There is no soft-OPE (which is NLO) contributions

$$\vec{A}_{ij}^{4F} = -\frac{g_A}{m_N f_\pi^2} \Big[2\hat{d}_1(\tau_i \vec{\sigma}_i + \tau_j \vec{\sigma}_j) + \hat{d}_2(\tau_i \times \tau_j)(\vec{\sigma}_i \times \vec{\sigma}_j) \Big]$$

Thanks to Pauli principle and the fact that the contact terms are effective only for L=0 states, only one combination is relevant:

$$\hat{d}^{R} \equiv \hat{d}_{1} + 2\hat{d}_{2} + \frac{1}{3}\hat{c}_{3} + \frac{2}{3}\hat{c}_{4} + \frac{1}{6}$$

The same combination enters into *pp, hep*, tritium- β decay (TBD), μ -*d* capture, ν -*d* scattering,

We use the experimental value of TBD to fix \hat{d}^R , then all the others can be predicted !

$\text{Results}(p \ p \rightarrow de^+ \nu_e)$

Λ (MeV)	\hat{d}^{R}	$\langle 1B \rangle$	$\langle 2B \rangle$
500	1.00	4.85	$0.076 - 0.035 \hat{d}^{R} = 0.041$
600	1.78	4.85	$0.097 - 0.031 \hat{d}^{R} = 0.042$
800	3.90	4.85	$0.129 - 0.022 \hat{d}^{R} = 0.042$

with \hat{d}^{R} -term, Λ -dependence has gone !!!

the astro S-factor (at threshold) $S_{pp} = 3.94 (1 \pm 0.15 \% \pm 0.10 \%) 10^{-25} \text{ MeV-barn}$

Results(*pp*)

Results(*hep*: ${}^{3}He + p \rightarrow {}^{4}He + e^{+} + v$)

Reduced matrix element with respect to Λ (MeV)

J. Bahcall said (hep-ex/0002018) "... do not see any way at present to determine from experiment or first principle theoretical calculations a relevant, robust upper limit to the hep production cross section."

Discussions

- A few examples of EFT-description for EW probes have been reviewed, trying to explain
 - EFT can resolve very challenging questions in a light nuclei systems
 - Renormalization cures the mismatches in the short-range
 - Mismatches in long-ranged region is tough
- More efficient degrees of freedom ?
 - Pionless EFTs have scored huge successes
 - How about including heavy mesons ?

Thank you for your attention !